

Let's Make Our Ghaziabad Clean, Green, Healthy and Prosperous

By- Satendra Singh (Chairman)

What is Compost?

- Organic material from decomposition of carbon (dried leaves), nitrogen (food scraps).
- Happens naturally certain techniques accelerate the process.
- Dark, crumbly, soil-like.

Compost Through History

Reference to use of manure in agriculture on clay tablets, 23rd Century BC.

Romans and Greeks used compost.

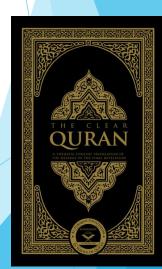
William Shakespeare's Hamlet advised: "Do not spread the compost on the weeds, to make them ranker."

Famous Composters

Many of America's founding fathers were farmers. All used compost.

George Washington Carver said, "...a compost pile is essential and can ' had with little labor and practically no cash outlay."

Compost importance grows



- In 1905, British agronomist learned best compost consisted of three times as much plant matter as manure.
- Rapid composting techniques develope in 1950-1960s.

Pre Green Revolution Era

- Ramayana
- Mentions of several manures like oil cakes and excreta of animal in Arthashatra.
- Mention of organic manure in Rig Veda, green manure in Atharva Veda etc.
- Mention of 'Kamdhenu' the celestial cow and its importance in soil fertility.
- At least one-third of what you take out from soil must be returned to it implying recycling or post harvest residue - Holy Kuran

RIG VEDA

SAMA VIEDA

Why Is It Important?

- <u>Reduces</u> waste stream. Yard and food scraps = 30% of landfill
- Improves soil structure.
- <u>Retains</u> moisture, slows run-off from rain.
- Reduces need for fertilizer.

What goes in your Compost?

Carbon: dried leaves, straw Nitrogen: food scraps, plants Water: moisture

Oxygen

Carbon

BROWNS

Dried leaves Straw Shredded paper Drier lint Newspaper Pine needles Sawdust Peanut shells

GREENS

Kitchen scraps Coffee grounds & filter Tea bags Fresh garden trimmings Pet hair Manure (from herbivores: poultry, cattle, goat)

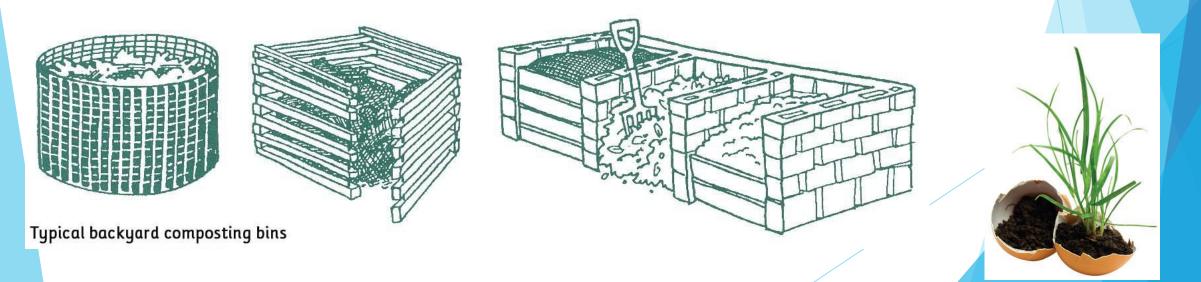
Top Reasons to Compost

- Reduces need for chemical fertilizers, mulch.
- Improves the structure of your soil.
- Reduces yard waste going to landfill.
- ✓ Slows storm water run-off, help protect Bav.
- Decreases water use in your landscape
- It's easy. Good exercise!

Different Methods of Composting

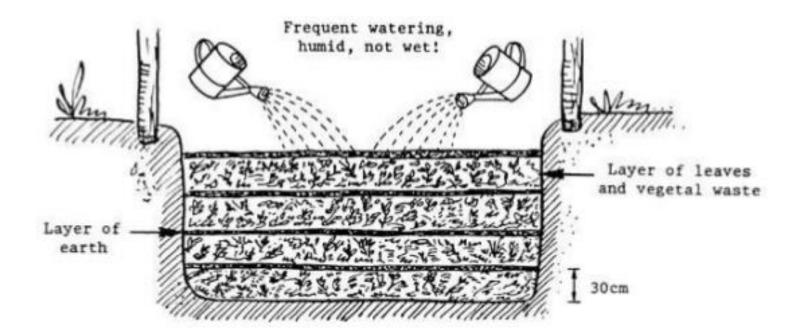
- Basic/Simple Compost Pit
- Vermicomposting
- Biogas Plant
- Sewage Sludge
- Using Machines
- Nadep Method

Basic/Simple Compost Pit



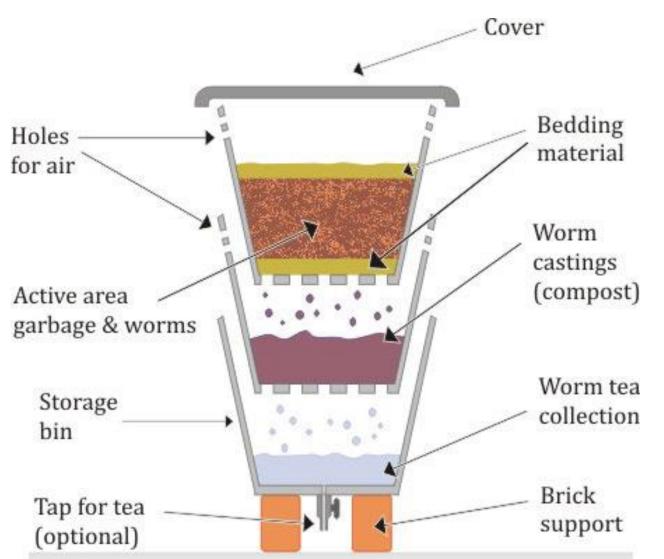
- It is the most basic and commonly used technique.
- It can be simply carried out with basic kitchen leftovers of fallen leaves etc.
- The pit can be easily be constructed in the ground/kitchen garden where we can put the organic waste material.
- The waste material can also be regularly collected and dumped in the pit.
- Different layer of organic waste and soil can be made.
- Animal excreta can also be used in this process.

Starting your Compost Pile



- Ideal size is 3 ft. x 3 ft. x 3 ft. (27 cubic ft.) Easier to turn, maintain aerobic action
- No larger than 5 x 5 x 5
 Can be anaerobic if too large

Vermicomposting



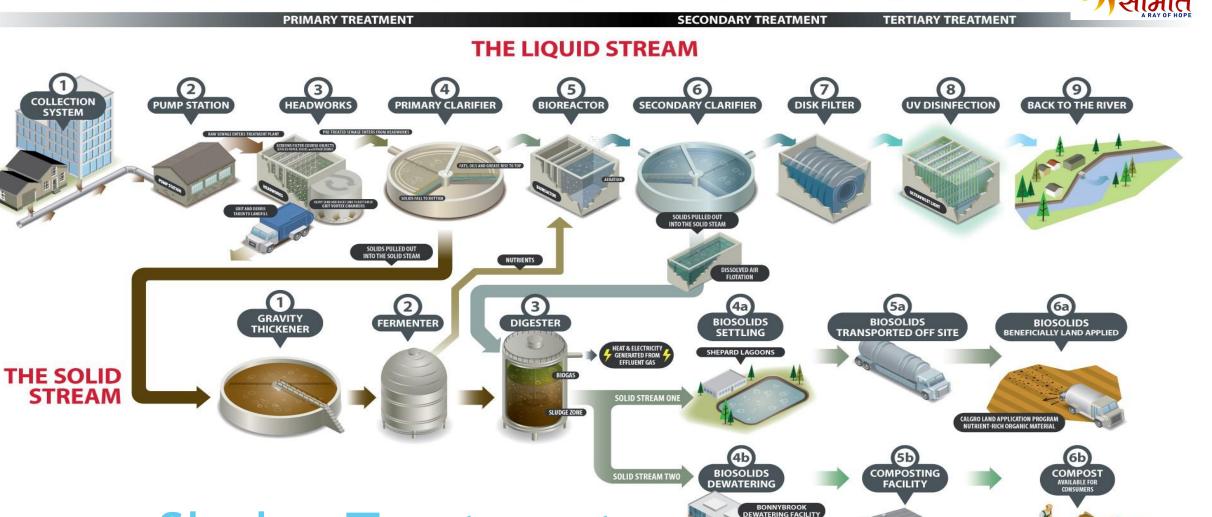
- It is just another type of compost pit but is more efficient and fast.
- It also uses basic kitchen leftovers and fallen leaves etc.
- It is also constructed in a pit where all the waste is dumped.
- The only difference between compost and vermicompost is the use of 'Red Worms'.
- The use of these worms speeds up the process of compost making.

Vermicompost

Biogas Plant

- It is a little advance method of composting.
- It uses any kind of organic waste produced in our homes.
- The waste is used in the form of slurry.
- This slurry is dumped into the digester tank where anaerobic bacteria acts on it.
- The slurry gets converted into Biogas and Manure.
- The main constituents of biogas are Methane, Carbon Dioxide, Nitrogen, Hydrogen.

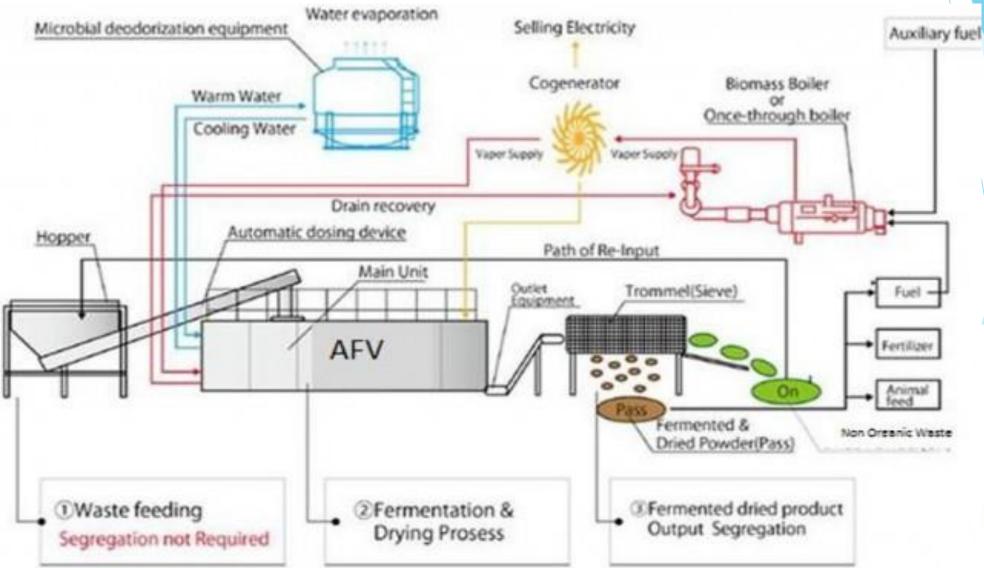
Biogas Plant



Sewage Sludge

- Sewage Sludge refers to the by product of industrial or municipal waste water.
- It can also be used to produce biogas and manure.
- It also make gas and manure with the help of bacteria.
- Sewage Sludge is either landfilled, incinerated, applied on agricultural land or, in some cases, retailed or given away for free to the general public.

WASTEWATER TREATMENT PROCESS



Sewage Sludge Treatment

2017-1093 | 17-00369356

Using Machines

Nadep Method

NADEP METHOD OF COMPOSTING

Narayan Deotao Pandharipande

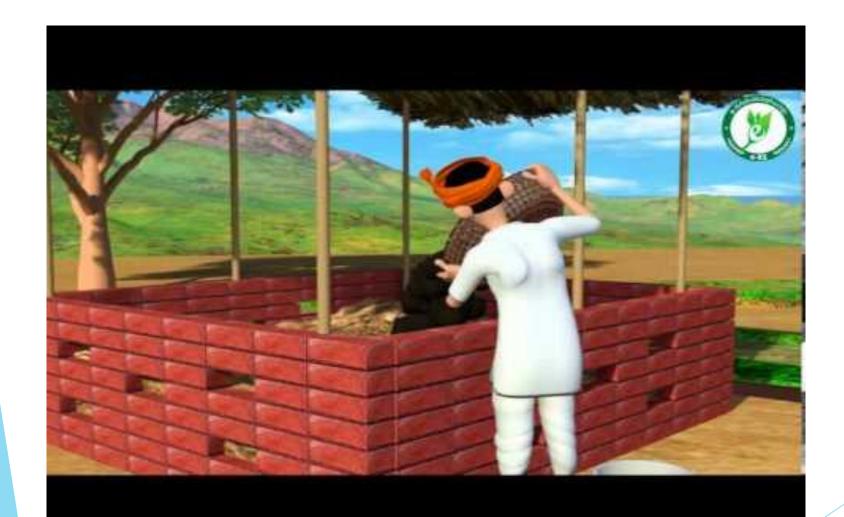
Description brick tank

rectangular

(length) x 5' (breadth) x 3' (height).

6⁴ vents after the height of 1ft. from bottom

Nadep Method



एनेडीईपी विधि NADEP METHOD OF COMPOSTING

Turn it to add Oxygen

Keep the worms, bugs, microbes happy and eating your browns and greens. Use a pitch fork to turn the pile.

The garden centers or farm supply stores offer a variety of pitch forks. Something that lifts and separates your compost while you turn it.

Few Things to avoid

- Meat, bones
- Dairy products
- Fats and oils
- Pet feces (dog, cat, other carnivores)
 - Wood ashes

These can attract critters you don't want, may create odd odors, or contain harmful bacteria/parasites.

Troubleshooting

Materials not decomposing:

Add water, turn pile to add oxygen, add more greens

Ammonia odor:

Add browns such as leaves, straw

Rotten odor:

Turn pile, add coarse dry materials. Bury food scraps

OK, when is it done?

When:

- material is even color, texture and has an earthy smell.
- temp of pile is at outdoor temp.
- a small amount in sealed plastic bag creates no condensation inside bag.

Top Reasons to Compost

- Reduces need for chemical fertilizers, mulch.
- Improves the structure of your soil.
- Reduces yard waste going to landfill.
- Slows storm water run-off, help protect Bay.
- Decreases water use in your landscape.
- ✓ It's easy. Good exercise!

Theoretical value of compost application :

- Increase organic matter
- Improve aggregate stability
- Reduce bulk density
- Increase water holding capacity
- Increase cation exchange capacity
- Enhance the soil microbial community
- Suppress soil pests
- Provide nutrients

Theoretical value of compost application :

- Increase organic matter
- Improve aggregate stability
- Reduce bulk density
- Increase water holding capacity
- Increase cation exchange capacity
- Enhance the soil microbial community
- Suppress soil pests
- Provide nutrients

Reality check :

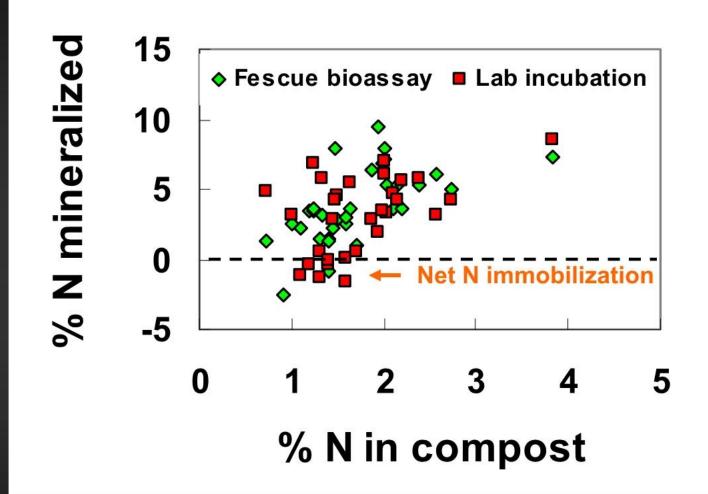
- 1) Compost application should increase soil organic matter and improve tilth; the practical significance of these and other effects varies on a case-by-case basis
- 2) Nitrogen contribution likely to be modest, whereas the P and K contribution may be excessive

General nutrient properties of composts : Nutrient content (dry weight basis) :

	% nutrient content		
Туре	N	Р	K
Poultry manure	2 - 4	1 - 3	1 - 3
Feedlot manure	2 - 3	1 - 1.5	1 - 2
Dairy manure	1 - 2	0.5 - 1.5	1 - 2
Urban yard waste	1 - 1.5	0.2 - 0.5	0.5 - 1.5
Crop residue	1.5 - 2.5	0.2 - 0.5	1 - 2

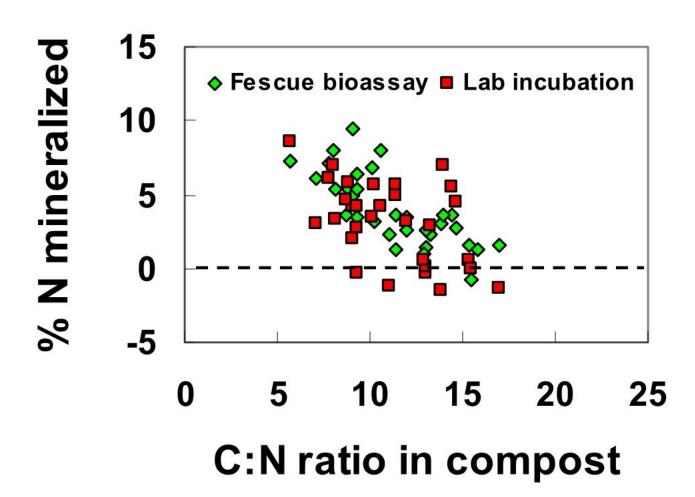
Forms of N present : Organic N > 90% Mineral N (NH₄-N, NO₃-N) < 10%

How much plant-available N do composts provide ?

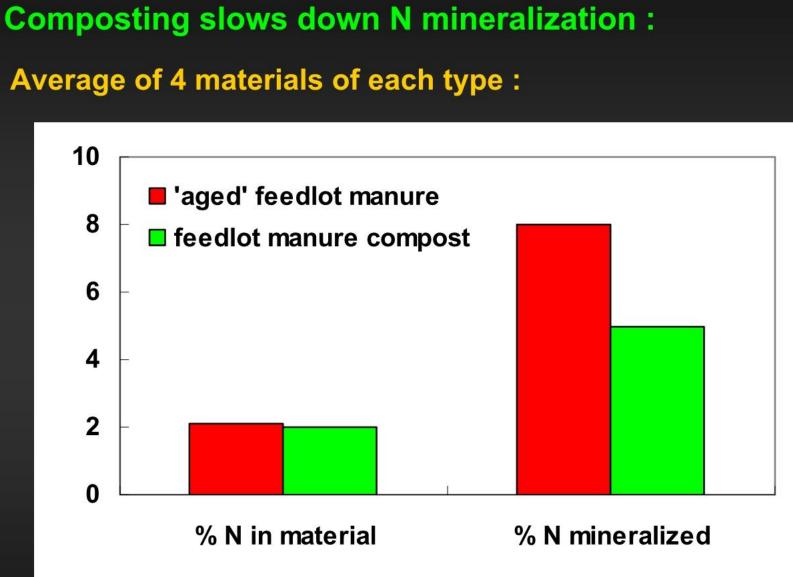


UCD N mineralization studies :

- 25 composts tested
- Poultry manure
- Feedlot manure
- Dairy manure
- Crop residue
- Urban green waste


Blended with moist soils, and net N mineralization was measured by : - incubation for 12 weeks @ 77 °F constant temperature - 18 week greenhouse bioassay measuring N uptake by fescue

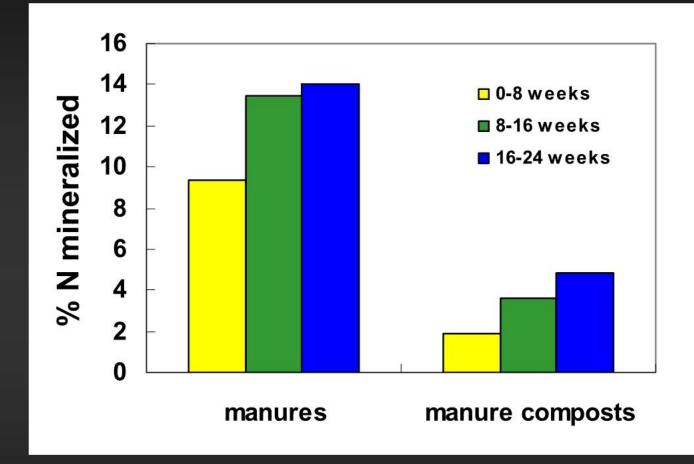
Seasonal net N mineralization no more than 10% of initial organic N



Do other researchers agree?

These results on the lower end, but recent research generally showed net N mineralization of common types of compost to be < 10% of initial N in the first growing season after application

The exception is very high-N manure-based compost (> 3% N), especially if not well composted



उत्थान शमिति अस्र प्रहामवि

18 week UCD lab incubation

N mineralization over time :

✓ N mineralization starts fast, slows over time

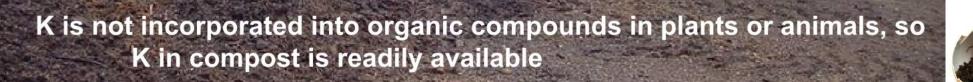
Sy the end of one season after field application the remaining compost N behaves much like soil organic matter

Calculating the N 'credit' from compost : Example: Feedlot manure compost @ 2% N If the application is 5 dry tons/acre = 200 lb total N/acre 5 to 10% of 200 lb = 10 to 20 lb available N for this season's crop

Manure compost application can result in excessive P and K :

✓ 5 dry tons/acre of compost with 2% P ≈ 450 lb P_2O_5 equivalent ✓ 5 dry tons/acre of compost with 2% K ≈ 250 lb K₂O equivalent

How available is P in animal manures and composts ?



% of P content in

Material	organic form	inorganic form
Feedlot manure	25	75
Composted manure	16	84
Dairy manure	25	75
Poultry litter	10	90
Swine manure	9	91

Studies show that manure or compost P can substitute nearly 1:1 for synthetic fertilizer; the limitation is that it cannot easily be banded unless the material is pelleted

✓ N contribution will be slowed due to surface drying, but heavy rate or repeated application can still cause excessive N availability

Excessive P and K loading an issue if the compost is manure-based

Is compost tea a significant nutrient source ?

 Most teas contain a range of essential nutrients, but at very low concentration
 At typical application rates the nutrient effect is insignificant

 a spray application of a typical compost tea @ 30 GPA would apply < 0.1 lb N / P / K per acre

